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Abstract: A new paradigm in networking, software-defined networking (SDN) separates control logic from forwarding
operations, allowing for faster administration and better setup of network resources. New SDN allows for more security
measures and drastically lowers the computational burden on devices associated to the internet of things (1oT) network.
However, centralized network design raises security concerns, especially DoS attacks. Since SDN lacks message-verification,
attackers can forge source address details to launch a denial-of-service attack. Ensemble Deep Learning and SDN are used to
detect and mitigate Distributed Denial-of-Service assaults in this article. The proposed framework uses the bidirectional gated
recurrent unit (BiGRU), transformer block, and convolutional neural network to develop an SDN-enabled security apparatus
for 10T devices to detect and mitigate DDoS attacks. Wildebeest Herd Optimization (WHO) selects remote SDN controller and
features to counter DDoS attacks utilizing Open Flow (OF) switches and reallocate network resources to permitted hosts. The
experimental results show that the recommended framework surpasses current state-of-the-art techniques in DDoS detection
accuracy and false alarm rate.
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A new era in contemporary worldwide communication infrastructure has dawned with the advent of the Internet of Things
(10T) [1]. It enables interoperability among smart communication technologies, revolutionising many areas of smart city life.
As more human-controlled data processing capabilities are integrated into the Internet of Things (loT) infrastructure, the
technology is driving the emergence of numerous practical applications [2]. The smooth integration of the 5G network has
enabled many loT-oriented smart city applications to increase the manufacturing of 10T devices. However, new security
research reveals that hackers are gaining access to 10T devices that lack adequate protection [3]. Attacks such as denial-of-
service (DaoS), DDaS, brute-force, and TCP SYN/UDP flooding are possible on the 10T network due to the large number of
devices that are not adequately protected. For example, millions of 10T devices are being subjected to DDoS assaults, which
are becoming more common due to the use of botnets [4].

Cybercriminals are becoming increasingly skilled at attacking network security. They may alter data in packet headers and
issue valid broad service requests to individual workstations or servers in typically constructed distributed networks [5]. When
it comes to forwarding plane network traffic, however, SDN's centralized control architecture enables thorough analysis of the
control plane, enabling appropriate security responses to various network security risks [6]. Since SDN integration has been so
effective so far, researchers are refocusing their efforts on improving network security to better detect and mitigate DDoS
threats [7]. Practical security procedures are made possible by several key properties of SDN-enabled networks. These include
a centralised view of the network topology, dynamic reconfiguration of the system, programmability of network devices, and
separation of the control plane and data plane. Building effective intrusion detection and prevention systems that SDN enables
relies heavily on SDN's integration capabilities [8].

Traditional dispersed network control and management structures are still used by most current administrative units. These
structures are not equipped to handle emergencies or new network problems. The goal of SDN is to decouple network control
and data forwarding from centralised controller management. However, this makes the controller's network traffic data both an
attractive target for hackers and a key indicator for IDS to spot malicious traffic [9]. To meet the security requirements of new
network types, we aim to effectively address issues with current intrusion detection systems and propose a software-defined
networking architecture that can thoroughly analyse network threats [10]. Traditional network control centres are slow when it
comes to device setup and threat prediction. The symmetry notion in this research encompasses the long-term viability of SDN
applications and the strong capability of machine learning (ML) models to handle various types of malicious attacks. The
former may have centralised administration and communication with OpenFlow switches thanks to the SDN design [11]. This
enables a more efficient and adaptable network setup through programming, reducing the overhead of controller-switch
communication. As for the second, the ML model must be resilient enough to detect unusual traffic and adapt to new threats;
therefore, it needs to achieve a certain level of detection performance across a variety of attacks and models [12].

To enhance decision-making skills and anticipate abnormalities, SDN environments reportedly use ML, DL, and other
algorithms. Threats and vulnerabilities pose significant deployment challenges in SDN environments, making IDS monitoring
of malicious activities an essential component of these designs. Furthermore, the centralised perspective of SDN presents new
practical options [13]. The most popular dataset for testing Al approaches in recent years is one aimed at identifying DDoS
attacks; however, the accuracy of predictions from this dataset depends heavily on its quality. To enhance the security of the
SDN architecture, predictions and workable solutions are sent back as SDN parameters [14]. Applications can only access all
of the network's data via the SDN. The integration of several applications makes load balancing and intrusion detection
considerably simpler. Whenever an anomaly is detected, plane [15].

Routers spread across the network operate the control and data planes because these devices have specific open interfaces
controlled by software. SDN architecture enables the simultaneous reconfiguration of multiple devices. In the application layer,
network device configuration is performed [16]. There is only one controller in the SDN design's control plane. To facilitate
communication between the two tiers, APIs are used [17]. DDoS attacks significantly impact the availability of the SDN.
Because it is the weakest link, the SDN controller is a primary target of distributed denial-of-service attacks. There is a single
potential weak spot in SDN: the controller operated from a central location [18]. A secure south-bound connection allows the
data plane and control plane to exchange messages. The network could experience massive delays even with a slight level of
channel congestion. The following is a list of the most important things that this study added:

e To create the module for inspecting and extracting features from live network traffic, and to calculate the entry for the
present network flow. After that, to identify DDoS attacks, we combine the trained ensemble deep learning module
with a dataset specific to the environment that tracks network traffic in real time.

The WHO model enhances classification accuracy by appropriately selecting the features.
To conduct various DDoS assaults to evaluate the proposed framework's detection and mitigation capabilities, and to
get encouraging results from the simulations.

e To develop an SDN topology design using Al-assisted security prediction and to suggest a prearranged cloud service
according to the unit's network characteristics.
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e To assess a security verification scenario, including a simulation, the protocol had to be able to identify and mitigate
traffic early if the SDN architecture was subjected to DDoS attacks.

2. Related Work

A thorough investigation of attack findings using the NSL-KDD dataset has been presented by Dash et al. [16]. This dataset
encompasses a diverse range of network traffic metrics. This research presents a comparison of two methods: one that utilises
Principal Component Analysis (PCA) and another that does not. There are preprocessing processes that utilise robust scaling
and encoding algorithms. After combining PCA with Robust Scaler, the results show that 10T device DDoS attack detection
becomes much more accurate. It is worth noting that the Random Forest and KNN classifiers outperform Naive Bayes,
achieving accuracies of 99.99% and 90.14%, respectively. The results of this experiment provide valuable insights for
enhancing the security of Internet of Things devices against distributed denial-of-service attacks. To achieve robust intrusion
detection systems for loT contexts, the proposed method emphasises the importance of suitable preprocessing procedures. In
their discussion of VANET Cloud security, Setia et al. [17] tackled a major issue. Connected cars and the cloud services they
rely on are vulnerable to (DDoS) assaults; thus, it's important to be able to predict and counter these attacks. A novel
architectural framework is proposed to capture and analyse network flows within the VANET Cloud environment, addressing
this problem. It also uses 99.59% accurate machine learning for categorisation and predictive analytics. Security in VANET
Cloud installations stands to benefit greatly from the design proposed in this study. Timely responses to security risks and
breaches are enabled by its versatility, which ensures practical application in real-world systems.

To effectively identify Distributed Denial of Service (DDoS) attacks in software-defined networking (SDN) settings, Najar and
Naik [18] propose a method that combines Balanced Random Sampling (BRS) with Convolutional Neural Networks (CNNSs).
Filtering, rate limitation, and an iptables rule to prohibit faked IP addresses are just a few of the mitigation strategies we've
implemented to address these risks. Furthermore, to ensure the rapid processing of legal data, we utilise a monitoring system
that employs rate limiting to track blocklisted IP addresses. Achieving an accuracy of over 99.99% for binary classification and
98.64% for multi-classification, the suggested model exhibits remarkable performance in both contexts. In addition to
identifying the assault, our suggested DDoS detection system would also notify a specified email address with extensive
contextual information. Using the Area Under the Curve (AUC) metric, we demonstrate that our model outperforms previously
published models. In addition, we compared our proposed DDoS mitigation system in three separate scenarios: Attack-Free,
Attack-No Mitigation, and Attack-Mitigation, to determine its efficiency and efficacy. These findings demonstrate that our
proposed mitigation solution is effective in combating DDoS attacks and maintaining normal network operations.

In their proposal for an improved method of identifying (DDoS) assaults, Hossain and Islam [19] combine an ensemble-based
classifier with a hybrid feature selection strategy. The classification accuracy, overfitting reduction, and model resilience are
all improved by combining multiple decision trees in an ensemble-based method. To determine which features are most helpful
for detecting attacks, the feature selection method employs principal component analysis, correlation analysis, and mutual
information. In terms of detection rates, the ensemble-based Random Forest classifier outperforms the other ensemble-based
methods when fed the important characteristics. Experimental results demonstrate that the proposed model outperforms state-
of-the-art methods across a wide range of datasets for DDoS attack identification, including accuracy, recall, precision, F1-
score, and false positive rate. With an error rate of 0%, a true positive rate of 100%, and an accuracy of almost 100%, the
suggested method shows great promise as a remedy for DDoS assault detection.

An efficient method for detecting DDoS attacks in both the SDN control and data planes has been proposed by Gadallah et al.
[20]. The method utilises new characteristics derived from traffic data to train a Deep Learning (DL) model that can detect
DDosS attacks on the control plane. The Autoencoder (AE) with Bidirectional Gated Recurrent Units (GRUS) is a DL approach
for DDoS detection. The control plane will include elements such as a transport layer protocol (TLP) header, a type of service
(ToS) header, an unknown IP destination address, and the packet's inter-arrival time. The method follows the average arrival
bit rate of the switch on the data plane, even while the destination address is unknown. Last but not least, the method employs
AE with BGRU in a DL-based model to identify DDoS assaults. On the data plane, we propose the following aspects: the
switch's storage capacity, the average flow rate, the IP Options header, and the average rate of packets with addresses. The
classifier utilises a dataset created by extracting features and performing calculations on both normal and attack packets. To
further enhance detection, additional Machine Learning (ML) approaches are employed. The method updates the user's trust
value and blocks questionable senders based on this value to minimise the consequences of DDoS attacks when the system
detects one. The proposed approach outperformed similar strategies in terms of accuracy and false alarm rate, as indicated by
the experimental data.

To better detect both DDoS and non-DDoS attacks, Nalayini et al. [21] presented an optimised dual intrusion detection system

that utilises the best available models. The optimal parameters are determined by Hyper-Tuned parameter optimisation using
methods such as Decision Trees, Random Forests, and Logistic Regression. To reduce the 77 features to 4, we apply the RFE
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method. Twenty-one models result from an innovative Deep Grid Network that combines hyper-tuned classifiers with seven
additional ML methods. To make the most accurate forecast of a DDoS attack, an ensemble approach selects the six best models
from 21. Additionally, Mininet generates a new dataset to ensure the model is validated correctly.

A practical dataset, HLD-DDoSDN, was suggested by Bahashwan et al. [22]. It includes the most common DDoS attacks
directed against an SDN controller, including ICMP, UDP, and Transmission Control Protocol (TCP). This SDN dataset also
includes a range of traffic fluctuation levels, representing the high and low traffic variation rates observed in DDoS attacks. To
ensure its superiority, it is statistically tested across all eight scenarios and qualitatively compared with existing SDN datasets.
Additionally, it incorporates important elements that significantly enhance the detection of genuine SDN attacks, and it meets
the size, attack diversity, and scenario criteria of a benchmark dataset. Our evaluation of HLD-DDoSDN's characteristics is
based on a detection technique called Deep Multilayer Perception (D-MLP). The results of the experiments demonstrate that
the characteristics used are highly effective in terms of accuracy, recall, and precision in recognising DDoS flooding attacks,
regardless of the attack rate.

To identify and categorise DDoS attacks, Effah et al. [23] developed and deployed a hybrid deep learning model called CRNN-
Infusion. Our model made use of a convolutional neural network (CNN) besides recurrent models; it was trained using the
CICDD0S2019 dataset acquired from the Canadian Institute of Cybersecurity (CIC); and to improve its efficiency and reduce
its dimensionality, we used Random Search Hyperparameter Tuning (RSHT) and Feature Selection (FS) approaches. Security
for training the model using Cyber Intelligence Centric (CIC) with RSHT and FS methods for dimensionality reduction and
improved model efficiency. When tested against competing deep learning (DL) models trained on the same dataset, our
proposed model outperformed them all as a DDoS attack classifier. Categorise distributed denial of service (DDoS) assaults on
network infrastructures with an accuracy of up to 99.992%. The results show that hybrid deep learning models perform best
when hyperparameter tuning and feature selection are performed effectively. Our suggested model achieved 98.92% accuracy,
99.02% precision, 98.92% recall, and 98.93% F1 score.

Using a feature selection and Bi-LSTM-based honey badger optimisation algorithm in a cloud setting, Pandithurai et al. [24]
demonstrated the ability to predict DDoS attacks. Initially, input characteristics are extracted from the DDoS attack dataset.
The next step is to send the input features to the preprocessing stages, which may include normalisation using Bayesian and Z-
score. Feature selection using Honey Badger Optimisation (HBO) is the next step after data preprocessing. Here, the features
are selected by minimising their MSESs to obtain the best features. Then, to forecast DDoS assaults, a Bi-LSTM classifier is
given the best characteristics. Additionally, the suggested model is tested using several pre-existing methods, such as ANNs,
DBNs, LSTMs, and DNNSs. The Bi-LSTM model achieved several impressive results when tested using the current approach.
It achieved high accuracy (97%), sensitivity (95%), specificity (90%), error rate (3%), precision (94%), and so on. Finding
DDosS in a cloud environment is made easy using the suggested paradigm.

To safeguard the SDN environment, Kaur et al. [25] proposed K-DDoS-SDN, a DDoS attack detection method based on Kafka.
The two main components of the K-DDoS-SDN are the NTStorage and NTClassification modules, which are responsible for
storing and classifying network traffic, respectively. To categorise traces in real time, the NTClassification module utilises an
efficient, well-implemented solution on the two-node Kafka Streams cluster, built with scalable H20 ML approaches in a
distributed manner. The NTStorage module systematically saves raw packets, network flows, and 21 key properties in HDFS
for retraining existing models. The recently released CICD0S2019 dataset was used for both the design and evaluation of the
projected K-DDoS-SDN. When it comes to identifying valid network traces and the most common types of attacks, including
DDoS and UDP, the proposed distributed K-DDoS-SDN achieves an average accuracy of 99.22%. Additionally, the results
demonstrate that the proposed K-DDoS-SDN successfully categorises traffic traces into five groups with an accuracy of 81%
or higher.

3. Proposed System
3.1. SDN-Enabled loT Topology

At the control layer, the distant SDN floodlights are coordinated with the Mininet emulator, which launches the SDN-enabled
l0T system architecture. On the forwarding plane, you'll find the deployed 10T hosts linked to OF switches. Notifying the SDN
of any new communication requests is the main function of these OF switches. When in use, OF switches notify the SDN
controller of DDoS attacks and the current congestion rate on all available communication lines. In response to a DDoS attack,
the SDN activates the built-in congestion management mechanism. Initially, the EV model, which employs adaptive machine
learning classification incorporating SVM and LR, is executed by the OF switches. In the mitigation response, the manager
calculates an alternative route using operational ports and link flow congestion information. This is done for real host requests.
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As intermediate devices, OF switches regularly provide statistics in bytes and execute path returns in compliance with the
controller; meanwhile, they use a hash table to record the hierarchical structure of the incoming statistics and the network
perspective. The SDN controller also sorts the calculated alternate pathways by network path index. The SDN controller's
ability to deploy more alternative pathways across OF switches has an inverse relationship with the predicted paths
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Figure 1: Custom SDN IoT system topology with POX supervisor

In this research, we also employ two topologies—Figures 1 and 2—for experiments that utilise SDN-enabled 10T networks.
With a POX Controller, we create a unique SDN-enabled 10T network architecture. In the second network architecture, we
include a Floodlight Controller to provide software-defined networking for things. At the forwarding plane, both topologies

have OpenFlow switches that are further linked to 10T devices. At the same time, SDN controllers are present in the control
plane to counter the DDoS attack.
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Figure 2: Custom SDN-enabled 10T topology with floodlight controller

Refer to Figure 3 for an illustration of how the proposed model would sit between the controller platform and other controller

applications. The three main parts are a mitigator, a detector, and a monitor. By establishing a mapping link among hosts, the
monitor enables rapid detection of network irregularities.
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Figure 3: Architecture of the proposed model
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3.2. Al Module and Deep Learning Models

We implemented an Al module in the controller to identify and categorise attack types when the SDN network experiences
anomalous packets. The models for binary and multiclass classification were trained on SDN public datasets during the study's
training phase. Unlike multiclass classification, which focuses on identifying abnormalities, binary classification aims to
distinguish between normal and abnormal instances. Before making a forecast for a binary or multiclass classification model,
network flows pass through the Al module to extract features. Lastly, the controller determines how to handle network traffic
based on the forecasts.

3.3. Dataset Description

The assessments in the proposed framework are conducted using a dataset specific to the environment. This dataset converts
the network statistics to a “CSV” file.

Table 1: Features of the traffic structures

RSIP SDFB RFES RPFES SDFP
41 119.721586 41 0.516129 0.450748
41 85.944815 41 0.516120 0.279828
41 84.437979 41 0.516129 0.278636

The “tshark” software, run from the terminal, is used to create the CSV file with restricted fields. Also, Tables 1 and 2
demonstrate the attack as mentioned above. Table 2 shows that the packet interval field shows the greatest difference between

the two traffic types.
Table 2: Features of the DDoS attack structures
RSIP RPFES SDFB RFES SDFP
12 1.00000 333.682848 34 0.721688
12 1.000000 313.496126 24 0.821678
12 1.000000 320.257404 25 0.6704407

The entire dataset, comprising 3999 rows and six columns, is presented in Figure 4. The last column determines whether the

traffic is considered normal or a distributed denial-of-service attack based on the initial values.

41 0.3897756769675662 75.804607046878985 41.1 0.5161290322580645 1
0 41 0. 450748 119. 721586 41 0.516129 1
1 13 0.835165 351.018887 26 1.000000 ©
2 13 0.714143 307. 680791 26 1.000000 O
3 11 0. 588235 334.996292 22 1.000000 0O
4 12 0.644899 329. 904769 24 1.000000 0
3994 12 0. 721688 333.682848 24 1.000000 ©
3995 12 0.821678 313. 412966 24 1.000000 0O
3996 41 0.279828 85.944815 41 0.516129 1
3997 41 0. 279828 04. 437979 41 0.516129 1
3998 12 0.670407 330. 257404 25 1.000000 0O

[3999 rows x & columns]

Figure 4: Print of the complete dataset over a usual or DDoS attack
3.4. Features Extraction of Network Traffic of Mininet Topology Stage

When the network settings are changed in the framework, the performance of the real-time traffic produced by the topology
varies. Figures 1 and 2 illustrate two distinct SDN network topologies, each featuring a unique combination of network density
and remote SDN controller. The pace of packet transmission via active communication channels, however, determines the
primary aspects of traffic. Such traffic characteristics differentiate between typical traffic patterns and very varied network
traffic requests. We created a module to collect data from real network traffic and classified its features. To gather traffic
information via the OF switches, our feature extraction module runs a shell script. It generates the “SVC” data files for the
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following metrics: packet count, byte size, source IP count, and destination IP count. Afterwards, the designed Python script
module takes these files as input and calculates several metrics, Rate of Flow Entries on Switch (RFES). Manipulating network
traffic can be achieved by manually initiating distributed denial-of-service (DDoS) attacks against specific hosts within the
network. To calculate the following traffic characteristics, this feature extraction module utilises libraries.

e Rate of Source IP (RSIP): This function shows the sum of source IPs in a certain amount of time for a specified
destination IP address:

RsIp = 237 @)

Where T is the sample time, which is modifiable based on how well the SDN controller manages the flow of traffic.

e SDFP, or Standard Packets: This is the deviation of the sum of packets during the T period:

SDFP = J((l/n) * 2 (packets; — meanPacketS))2 2)

Given that n is the count of flows, [(packets] _i is the count of packets for flow ith in T period, and mean is the sum of all of

them. The total packets across all flows and all T times are averaged to obtain the average packets. Because a distributed denial-
of-service (DDoS) attack involves the transmission of many small packets, each with a smaller standard deviation than a typical
data packet, this parameter drops dramatically during an attack.

e The Standard Deviation of Flow Bytes (SDFB) represents the quantity of bytes within the standard deviation of the T
period:

2
SDFB = J((l/n) * )L, bytes; — meanBytes) ?3)

where bytes; is the total bytes of flow ith during the time period, and meanBytes is the average of all the flows' total bytes
during that time. Similar to SDFP, SDFB is strongly associated with DDoS attack occurrences. During an assault, this
parameter's predicted value is lower than it is during regular traffic flows.

¢ The sum of flow entries to the switch within a given time period is known as the RFES.

RFES = ZT—F @)

This is a crucial statistic for attack identification because, unlike the SFE value during normal traffic flows, the sum of flows
increases significantly within a predetermined time frame during an attack.

e Pair-Flow Entries on Switch Ratio (RPFES): The sum of interactively divided flow entries in the switch divided by
the total number of flows during the T time

IntIP

RFES = (5)

Where N is the overall IP count, and IntIP is the overall count of IPs that are interactive inside the flow. Therefore, there will
be a precipitous decline in the volume of interaction flows the moment the assault starts. The feature extraction unit then
generates the RSIP, RFES, and RPFES headers and assigns the calculated values once the features mentioned above have been
computed. The feature extraction module assigned the value 1 to typical traffic based on the computed values. To accept
incoming network traffic in real time, the feature extraction module generates the training data file, “live.csv”, at the end of the
process.

The “live.csv” file stores the freshly calculated network traffic and feeds it into the trained adaptive machine learning model.
Five characteristics of network traffic can effectively distinguish DDoS attacks from regular traffic: they include an abnormal
exponential growth in the values of RSIP, RFES, and RPFES, which stand for Rate of Flow Entries on Standard Deviation of
Flow Bytes, respectively. This significantly improves the efficacy and precision of DDoS detection.
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3.5. Feature Selection using the WHO Algorithm

The main reason for selecting this approach is that it is relatively new compared to other types of metaheuristic algorithms.
Furthermore, it produces better results for the study's benchmark functions as well. Because of this, we decided to employ this
metaheuristic approach to enhance the efficiency of the proposed strategy. The World Health Organisation's algorithm is based
on wildebeests' behaviour: finding food. Wildebeests are social, energetic creatures who are always on the go in quest of food.

As a mating strategy, guys engage in sex challenges with potential suitors. The WHO algorithm began with randomly selected
candidates. Among smaller (X,,;,) and upper (X,,ax) borders, the populace was constrained, i.e.,

Xi € [Xmin'Xmax] (6)

Here,1=1,2,...,N

After that, the wildebeest started moving with the milling gait. During this stage, the ideal position was still being sought, with
a fixed value (n) representing the small random mobility that depends on location. Those vying for spot X had used a phase. Z,
It should consistently look for the small areas. The duration might be adjusted based on the size of the participants' arbitrary
steps. Because of this, the era of focused experiments Z,, was produced formula:

Z,=Xj+exOxv @)

Here, a random unit vector is characterised by v; a random unchanging value among 1 and 0 is denoted by 0'; the ith applicant
sum is represented by X;; and the learning degree is signified by €. After assessing a fixed sum (n) of minor random possibilities,
the wildebeest adjusted its position to find an ideal random site. It is labelled in Equation (8) below.

Xi =a; XZy + By X (X; —Zp) (8)

Here, the local movement of the candidates is taught by the a; and (3; leader variables.

Xi =a; XXj + B2 XXy ©)

Here, a, besides 3, stand in the crew’s local drive, and X;, denotes a random candidate.

Xi = Xi + 6 X (Xmax - Xmin) XV (10)

Here, the haphazard unit vector is represented by v. Another term employed in the algorithm was to simulate crowded locations.
There was a population when the grassland was quite productive. Personal pressure is the term used to describe this idea. To
complete a job, this word is employed, and the top candidate applies the following formula to outperform all other competitors.
if(I1X* = XD <, (IX* = Xil) > 1 (11)

ThenX; =X"+exi (12)

Where the symbol h stands for a congestion-prevention threshold and n"is the number of reachable sections close to the optimal
solution point. After simulating the swarm'’s social memory in the previous step to improve placements, the following equation
was used to calculate it.

X=X"+01x1 (13)

At last, the classifier's hyperparameters were initialised using the optimal value of this approach. The ideal parameters are an
L2 regularisation dropout rate of 40%, a momentum of 0.8, a learning rate of 0.001, a 1 x 10—6, and an 8-batch size. The
difficulty of the WHO procedure is O (p x m). Here, m besides n signify the populace and problem dimension, correspondingly.

3.6. Proposed Multichannel Deep Learning Framework

Three models were used for this study, all of which contributed to the final forecast, and the research made use of an integrated
multichannel method:

e The transformer block,
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e Typical CNN architecture.
o Bidirectional GRU (BiGRU)

Our suggested approach differs from the current state of the art by combining the capabilities of three state-of-the-art deep
learning representations: the block, BiGRU, and CNN architectures. As a consequence, it can accurately extract relevant
information and provide reliable results. More information on each of them is provided in the sections that follow.

3.6.1. Transformer Block

The transformer accelerates training by enabling fast parallel computation, unlike RNNs and LSTMs. Faster learning and
improved model performance on any prediction task are enabled by the attention mechanism, which addresses the limitations
of the encoder-decoder model with lengthy sequences. The transformer is primarily composed of multihead attention (MHA)
and scaled dot-product attention units. Also included in the model are embeddings, a fully connected network, encoder and
decoder stacks, and a softmax. It is possible to determine the transformer's scaled dot-product as

a(q,k,v) = SM (j%_iv) (14)

Where a represents each attention key, v is a charge, and SM is SoftMax. dy is the dimensionality of the vector. The square
root of the dimensions of the key vectors is used to split the attention weights. To make the weights equal to one, the function
is used in the equation. To find MHA, use the formula in (15).

MHA(q, k,v) = Concat(hdy, ..., hd, )W° (15)
where hd; is intended as follows:

and w; 2, w;¥, w;V agree to the weight media to be learned. The transformer nevertheless surpasses NLP deep representations,
such as LSTMs and gated recurrent units (GRUS), on several tasks, while utilising only the attention mechanism and not an
RNN, and setting the embedding size.

3.6.2. Bidirectional Recurrent Neural Networks

The bidirectional network in our perfect begins with a layer that applies dropout to entire feature maps rather than specific
regions. Then, the GRU-based bidirectional RNN (BiRNN) layer [32] receives the output from this layer. This layer links two
hidden layers, one facing ahead and one facing backwards, to the same output. Afterwards, the BiRNN layer's output is
concurrently passed to pooling layers, which then aggregate their outputs to produce fresh input for the following level. There
are several windows or partitions within each input feature map. Following these steps, the average pooling function may
determine the average of an n-by-n window:
X1+Xp++Xp (17)
n

The max-pooling of the sum that has a window {x,..x,}. The goal of both max pooling and average pooling is to reduce the
dimensionality of the data while retaining all relevant information.

Z = 0(Wy, Xy + We,Sii—1 + by) (18)
et = 0(WyeXyj + WeeSti—1 + be) (19)
g = tanh(Wngti + Whg(eiOhg_q) + bg) (20)
sd = (1 —24)Osy-1 + 25O (21)

where x;; is the contribution to the GRU cell at period ti. W,,, W,, and W, are the weight matrices that receives input X;. Wi,
W and W, are matrices, the previous cell state vector. tanh is a function, and o is a purpose. be, bg, and b, are units. s;; is

the output at time ti.(© mentions the Hadamard creation. In BiRNNs, each GRN cell computes the hidden direction s;,_; and
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the backward direction s ;. As a result, the BiIGRU can benefit from features in both directions. The following equation
explains the concept of BiRNNSs.

Sti = Su—1PSut1 (22)
Where @ suggests the element-wise sum for the vectors from both commands, left and right.
3.6.3. Basic CNN architecture

Another CNN we have is simple and has only one CNN layer. The ReLU activation is applied, and the layer contains 32 filters,
each with a size of 4. Every CNN filter uses the filter map W to convolve the input x with the feature map CV.

F = CV(W,X) (23)
Then, the bias unit b enhances the chin map activation function, as exposed in (24)
Relu(F + b) (24)

At the outset of training, the CNN layer's filters are randomly initialised using the Glorot normal initialiser. The output is then
sent to the film, which uses a pool size of 2 and applies dropout at 50%.

3.6.4. Multichannel

Three networks—Convolutional Neural Networks (CNNs), BiRNNs, and a transformer block—are used in this paper's
multichannel deep learning model to process the input concurrently. The output is aggregated and sent to two fully coupled
dense layers, one from each network. There are 60 neurons in the first dense layer and 30 in the second. The softmax classifier
is then given the output. Softmax categorises the input data into two groups: cyberbullying and non-cyberbullying. The outputs
of the three nets are mutually using the same layer. If vectors U, I, O, where U is as follows: U = {U,, U,,..U;}, the vector | is
as follows: I = {I;, [,,..1;}, and the vector O is as follows: O = {04, O, .. 0;}, then combine them into one vector as shadows:

V = Conc(U, ,0) (25)

The consequence V would be as shadows: V. = {U;, U,, U;, 13, I,, [;, 01, 05, 0;}
Dense layer computes its output DL as shadows:

Where w is the activation function, it is performed, after which b is added. Given that this model addresses a binary classification
problem, a binary loss function was used. To understand how the entropy loss function works, look no further than Equation
(27).

BC = _ZCYC-IOg(SG(X)c) (27)

Where ¢ represents the class index, this problem is divided into two classes. With the current input data (x) and the anticipated
probability (s) for class ¢, we can determine the proper value (y) for class c. Additionally, we optimise the network using the
Adam optimiser.

4. Result and Discussion

This section presents the outcomes of the suggested model. A desktop computer equipped with a 3.20 GHz Intel Core (i7)
8700U CPU, 4 GB of NVIDIA GeForce GTX 1050 Ti graphics, and 16 GB of main memory was used to perform the
experimental research for this work. The program was developed using Python 3.7 and the associated libraries. By allocating
70% of the data for training and 30% for testing, we were able to boost the network's learning capacity while preventing
overfitting and deterioration. Using L2 regularisation, the hyperparameters that the WHO procedure optimises are: a learning
rate of 0.4. To make sure the model learned consistently, we set the training duration to 100 epochs. After fifty epochs, the
learning and training curves converged, indicating that the model had reached a stable state.
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4.1. SDN Simulation

Using the commercial edition of EstiNet, which combines the benefits of a simulator and an emulator
(https://www.estinet.com/ns/? page_id = 21140), this study's SDN version. This means that the SDN controller allocates
resources to mimic the host's test network traffic. It is also possible to programmatically control the occurrence of network
events. This means that the simulated environment's timing resources are synchronised with the real system time. The software's
graphical user interface enables the modelling of the actual network's design and packet transmission behaviour. In its software
imitation, EstiNet displays the actual network setup and packet transmission characteristics. The EstiNet simulator includes
OpenFlow, which supports the SDN protocol. In software-defined networking, controllers and switches communicate via the
OpenFlow protocol. There are two possible configurations for the control plane in an OpenFlow switch: one in which the
control plane and data plane overlap (in-band control plane), and the other in which they are distinct (out-of-band control plane).
In the EstiNet simulation's software-defined networking (SDN) environment, the open-source controller software may run and
take control of the OpenFlow virtual switch. Within the simulated environment, it adheres to the OpenFlow protocol and
supports activities. With the simulator's execution and playback modes, users can observe how FlowTable, GroupTable, and
MeterTable are updated. Whether it's the packet transmission latency or loss rate of a wired network, or the energy consumption
or distance covered by a wireless network, EstiNet can programmatically regulate these network conditions.

Using a variety of wireless and cable communication protocols, it transmits packets over a network. The most common
application of time dilation is to model changes in the rate of time passage. Reducing the system clock while maintaining
accuracy allows for the simulation to run. With the help of a packet event translator or the event processing core, the simulated
network's virtual network time is automatically updated, making it more accurate and efficient than traditional time dilation
approaches. To execute the program code, EstiNet utilises Linux containers. Construct virtual networks to build hybrid
virtual/physical simulations. The EstiNet simulator offers a testing environment for networks, encompassing both real and
virtual devices. For testing purposes, both types of devices can communicate with each other. Our ML, in addition to DL
representations, is deployed in the SDN for specific purposes, as it supports the Python language. As a tool for DDoS attack
simulation under Linux, the Hing tool simulates SYN flood and random-source attacks. It is a packet assembler/analyzer. An
attacker may launch a (DDoS) assault by sending several connection requests and a flood of random packets to the target system
from various sources. The environmental setting is shown in Figure 5.

Floodlight V1.2

|
' 8§
| y Controller
| .
b L

Figure 5: Environment setup
4.2. Performance Measure
A performance indicator is a reliable way to assess the proposed system's efficiency by regularly evaluating results and
outcomes. Additionally, the procedure of educating, assembling, and analysing data regarding the outcomes of group or solo
activities is a measure of efficacy. See Table 3 for the confusion measure used to assess the binary input; it's explained in the
following words:

Table 3: Confusion matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Positive (FP)
Actual Negative False Negative (FN) True Negative (TN)
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True positives are actual occurrences that have been appropriately labelled as positive. Once a genuine positive is recognised
as a false negative, the FP will state as much. Just as FN are actual negative occurrences, TN are true negatives that were
incorrectly classed as positive. The mathematical equations of ACC, F-m, PR, and RC are meant in Egs. (28), (29), (30), and
(32).

Accuracy = TP %100 (28)
TP+TN+FN+FP
F — measure = ———— x 100 (29)
(2TP+FP+FN)
Precision = ——— x 100 (30)
(FP+TP)
TP
Recall = et < 100 (31)

Where true positive is symbolised as TP, and TN expresses true negative, and then FP is spoken as false positive, and FN is
uttered as false negative.

Table 4: Validation analysis of proposed feature selection

Methodology Parameter Evaluation
Precision (%) Recall (%) Accuracy (%) | F-measure (%)
PSO 78.14 89.92 88.67 80.72
ACO 70.91 72.69 72.33 75.17
MBO 64.17 86.66 80.24 68.28
GWO 91.94 95.61 76.86 95.78
WHO 96.84 97.24 94.13 98.97

Table 4 represents the Validation Analysis of the Proposed Feature Selection. In the analysis of the PSO scheme, a precision
of 78.14, a recall of 89.92, an accuracy of 88.67, and an F-measure of 80.72 correspondingly. Then, the ACO scheme achieved
precision of 70.91%, recall of 72.69%, accuracy of 72.33%, and an F-measure of 75.17%. Then, the MBO scheme achieved a
precision of 64.17%, a recall of 86.66%, an accuracy of 80.24%, and an F-measure of 68.28% (Figure 6).
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Figure 6: Visual representation of proposed feature selection models

Then the GWO scheme achieved a precision of 91.94, a recall of 95.61, an accuracy of 76.86, and an F-measure of 95.78. Then,
the WHO scheme achieved a precision of 96.84, a recall of 97.24, an accuracy of 94.13, and an F-measure of 98.97 (Figure 7).
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Figure 7: Graphical description of various classifiers
4.3. Advantages and Restrictions
This section deliberates the compensations and limits of the proposed model.
4.3.1. Advantages
The projected scheme has the subsequent compensations:

¢ No additional hardware is needed; the suggested model is an add-on module for the SDN controller that blocks DoS
attacks targeting SDN. It acts as a barrier between the controller and other controller programs, and its design aligns
with OpenFlow standards. It is unique in that it requires no changes to the data plane or supplementary hardware.

¢ Quick anomaly detection: the watchdog establishes connections between hosts and switches for mapping purposes.
Using statistical models enables the quick identification of network irregularities.

o Low overhead and effective: the monitor only activates the detector to identify attacks when it detects an abnormality,
which drastically reduces the system's overhead compared to other DoS detection methods. Concurrently, the detector
considers the characteristics of the address assault and extracts the most indicative features to enhance the detection
algorithm's performance.

4.3.2. Limitations
The projected scheme also has some limits, which are briefly discussed as shadows:

o Doesn't target particular flows—instead, after an assault has been verified, the proposed model's mitigator will set up
flow rules to prevent further communication from the infected host.

Second, it can't identify attacks on the application plane; the suggested model was primarily designed to safeguard data-plane
and control-plane components, such as flow tables and controllers. Malicious apps or data leaks that occur on the request plane
or via northbound interfaces (e.g., RESTful API) are not protected.

5. Conclusion

In this article, we examine ways to protect Software-Defined Networking (SDN) settings against denial-of-service (DoS)
attacks that exploit fake or falsified source addresses. These attacks are quite dangerous because SDN systems separate the
control and data planes, making the controller an ideal target for overload attacks. To fix this problem, the research suggests an
adjustable, protocol-free security framework that uses ensemble deep learning. This model uses several learning techniques to
make it more robust and accurate at distinguishing real from fake traffic. The WHO technique is a way to extract and select
features that help the model identify the most important flow characteristics, thereby improving its ability to detect. The system
is a small add-on for SDN controllers that works with OpenFlow messages and detailed flow statistics. The model looks for
anomalous patterns in data exchanges between switches and hosts that could indicate an ongoing attack. When the model
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detects suspicious activity, it automatically configures flow rules at the switch level to block hazardous packets from reaching
the controller. This method greatly reduces the controller's workload and mitigates the effects of DoS attacks. The study's
practical results show that the proposed ensemble deep learning model achieves high accuracy, low overhead, and low
computational cost. It can detect and stop many types of DoS attacks targeting SDN infrastructure. Overall, the solution
provides SDN security with a framework that can grow, perform well, and adapt to protect against spoofed-source DoS attacks.
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