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Abstract: A new paradigm in networking, software-defined networking (SDN) separates control logic from forwarding 

operations, allowing for faster administration and better setup of network resources. New SDN allows for more security 

measures and drastically lowers the computational burden on devices associated to the internet of things (IoT) network. 

However, centralized network design raises security concerns, especially DoS attacks. Since SDN lacks message-verification, 

attackers can forge source address details to launch a denial-of-service attack. Ensemble Deep Learning and SDN are used to 

detect and mitigate Distributed Denial-of-Service assaults in this article. The proposed framework uses the bidirectional gated 

recurrent unit (BiGRU), transformer block, and convolutional neural network to develop an SDN-enabled security apparatus 

for IoT devices to detect and mitigate DDoS attacks. Wildebeest Herd Optimization (WHO) selects remote SDN controller and 

features to counter DDoS attacks utilizing Open Flow (OF) switches and reallocate network resources to permitted hosts. The 

experimental results show that the recommended framework surpasses current state-of-the-art techniques in DDoS detection 

accuracy and false alarm rate. 
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A new era in contemporary worldwide communication infrastructure has dawned with the advent of the Internet of Things 

(IoT) [1]. It enables interoperability among smart communication technologies, revolutionising many areas of smart city life. 

As more human-controlled data processing capabilities are integrated into the Internet of Things (IoT) infrastructure, the 

technology is driving the emergence of numerous practical applications [2]. The smooth integration of the 5G network has 

enabled many IoT-oriented smart city applications to increase the manufacturing of IoT devices. However, new security 

research reveals that hackers are gaining access to IoT devices that lack adequate protection [3]. Attacks such as denial-of-

service (DoS), DDoS, brute-force, and TCP SYN/UDP flooding are possible on the IoT network due to the large number of 

devices that are not adequately protected. For example, millions of IoT devices are being subjected to DDoS assaults, which 

are becoming more common due to the use of botnets [4]. 

 

Cybercriminals are becoming increasingly skilled at attacking network security. They may alter data in packet headers and 

issue valid broad service requests to individual workstations or servers in typically constructed distributed networks [5]. When 

it comes to forwarding plane network traffic, however, SDN's centralized control architecture enables thorough analysis of the 

control plane, enabling appropriate security responses to various network security risks [6]. Since SDN integration has been so 

effective so far, researchers are refocusing their efforts on improving network security to better detect and mitigate DDoS 

threats [7]. Practical security procedures are made possible by several key properties of SDN-enabled networks. These include 

a centralised view of the network topology, dynamic reconfiguration of the system, programmability of network devices, and 

separation of the control plane and data plane. Building effective intrusion detection and prevention systems that SDN enables 

relies heavily on SDN's integration capabilities [8]. 

 

Traditional dispersed network control and management structures are still used by most current administrative units. These 

structures are not equipped to handle emergencies or new network problems. The goal of SDN is to decouple network control 

and data forwarding from centralised controller management. However, this makes the controller's network traffic data both an 

attractive target for hackers and a key indicator for IDS to spot malicious traffic [9]. To meet the security requirements of new 

network types, we aim to effectively address issues with current intrusion detection systems and propose a software-defined 

networking architecture that can thoroughly analyse network threats [10]. Traditional network control centres are slow when it 

comes to device setup and threat prediction. The symmetry notion in this research encompasses the long-term viability of SDN 

applications and the strong capability of machine learning (ML) models to handle various types of malicious attacks. The 

former may have centralised administration and communication with OpenFlow switches thanks to the SDN design [11]. This 

enables a more efficient and adaptable network setup through programming, reducing the overhead of controller-switch 

communication. As for the second, the ML model must be resilient enough to detect unusual traffic and adapt to new threats; 

therefore, it needs to achieve a certain level of detection performance across a variety of attacks and models [12]. 

 

To enhance decision-making skills and anticipate abnormalities, SDN environments reportedly use ML, DL, and other 

algorithms. Threats and vulnerabilities pose significant deployment challenges in SDN environments, making IDS monitoring 

of malicious activities an essential component of these designs. Furthermore, the centralised perspective of SDN presents new 

practical options [13]. The most popular dataset for testing AI approaches in recent years is one aimed at identifying DDoS 

attacks; however, the accuracy of predictions from this dataset depends heavily on its quality. To enhance the security of the 

SDN architecture, predictions and workable solutions are sent back as SDN parameters [14]. Applications can only access all 

of the network's data via the SDN. The integration of several applications makes load balancing and intrusion detection 

considerably simpler. Whenever an anomaly is detected, plane [15].  

 

Routers spread across the network operate the control and data planes because these devices have specific open interfaces 

controlled by software. SDN architecture enables the simultaneous reconfiguration of multiple devices. In the application layer, 

network device configuration is performed [16]. There is only one controller in the SDN design's control plane. To facilitate 

communication between the two tiers, APIs are used [17]. DDoS attacks significantly impact the availability of the SDN. 

Because it is the weakest link, the SDN controller is a primary target of distributed denial-of-service attacks. There is a single 

potential weak spot in SDN: the controller operated from a central location [18]. A secure south-bound connection allows the 

data plane and control plane to exchange messages. The network could experience massive delays even with a slight level of 

channel congestion. The following is a list of the most important things that this study added:  

 

 To create the module for inspecting and extracting features from live network traffic, and to calculate the entry for the 

present network flow. After that, to identify DDoS attacks, we combine the trained ensemble deep learning module 

with a dataset specific to the environment that tracks network traffic in real time. 

 The WHO model enhances classification accuracy by appropriately selecting the features.  

 To conduct various DDoS assaults to evaluate the proposed framework's detection and mitigation capabilities, and to 

get encouraging results from the simulations. 

 To develop an SDN topology design using AI-assisted security prediction and to suggest a prearranged cloud service 

according to the unit's network characteristics. 
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 To assess a security verification scenario, including a simulation, the protocol had to be able to identify and mitigate 

traffic early if the SDN architecture was subjected to DDoS attacks. 

 

2. Related Work 

 

A thorough investigation of attack findings using the NSL-KDD dataset has been presented by Dash et al. [16]. This dataset 

encompasses a diverse range of network traffic metrics. This research presents a comparison of two methods: one that utilises 

Principal Component Analysis (PCA) and another that does not. There are preprocessing processes that utilise robust scaling 

and encoding algorithms. After combining PCA with Robust Scaler, the results show that IoT device DDoS attack detection 

becomes much more accurate. It is worth noting that the Random Forest and KNN classifiers outperform Naïve Bayes, 

achieving accuracies of 99.99% and 90.14%, respectively. The results of this experiment provide valuable insights for 

enhancing the security of Internet of Things devices against distributed denial-of-service attacks. To achieve robust intrusion 

detection systems for IoT contexts, the proposed method emphasises the importance of suitable preprocessing procedures. In 

their discussion of VANET Cloud security, Setia et al. [17] tackled a major issue. Connected cars and the cloud services they 

rely on are vulnerable to (DDoS) assaults; thus, it's important to be able to predict and counter these attacks. A novel 

architectural framework is proposed to capture and analyse network flows within the VANET Cloud environment, addressing 

this problem. It also uses 99.59% accurate machine learning for categorisation and predictive analytics. Security in VANET 

Cloud installations stands to benefit greatly from the design proposed in this study. Timely responses to security risks and 

breaches are enabled by its versatility, which ensures practical application in real-world systems. 

 

To effectively identify Distributed Denial of Service (DDoS) attacks in software-defined networking (SDN) settings, Najar and 

Naik [18] propose a method that combines Balanced Random Sampling (BRS) with Convolutional Neural Networks (CNNs). 

Filtering, rate limitation, and an iptables rule to prohibit faked IP addresses are just a few of the mitigation strategies we've 

implemented to address these risks. Furthermore, to ensure the rapid processing of legal data, we utilise a monitoring system 

that employs rate limiting to track blocklisted IP addresses. Achieving an accuracy of over 99.99% for binary classification and 

98.64% for multi-classification, the suggested model exhibits remarkable performance in both contexts. In addition to 

identifying the assault, our suggested DDoS detection system would also notify a specified email address with extensive 

contextual information. Using the Area Under the Curve (AUC) metric, we demonstrate that our model outperforms previously 

published models. In addition, we compared our proposed DDoS mitigation system in three separate scenarios: Attack-Free, 

Attack-No Mitigation, and Attack-Mitigation, to determine its efficiency and efficacy. These findings demonstrate that our 

proposed mitigation solution is effective in combating DDoS attacks and maintaining normal network operations. 

 

In their proposal for an improved method of identifying (DDoS) assaults, Hossain and Islam [19] combine an ensemble-based 

classifier with a hybrid feature selection strategy. The classification accuracy, overfitting reduction, and model resilience are 

all improved by combining multiple decision trees in an ensemble-based method. To determine which features are most helpful 

for detecting attacks, the feature selection method employs principal component analysis, correlation analysis, and mutual 

information. In terms of detection rates, the ensemble-based Random Forest classifier outperforms the other ensemble-based 

methods when fed the important characteristics. Experimental results demonstrate that the proposed model outperforms state-

of-the-art methods across a wide range of datasets for DDoS attack identification, including accuracy, recall, precision, F1-

score, and false positive rate. With an error rate of 0%, a true positive rate of 100%, and an accuracy of almost 100%, the 

suggested method shows great promise as a remedy for DDoS assault detection. 

 

An efficient method for detecting DDoS attacks in both the SDN control and data planes has been proposed by Gadallah et al. 

[20]. The method utilises new characteristics derived from traffic data to train a Deep Learning (DL) model that can detect 

DDoS attacks on the control plane. The Autoencoder (AE) with Bidirectional Gated Recurrent Units (GRUs) is a DL approach 

for DDoS detection. The control plane will include elements such as a transport layer protocol (TLP) header, a type of service 

(ToS) header, an unknown IP destination address, and the packet's inter-arrival time. The method follows the average arrival 

bit rate of the switch on the data plane, even while the destination address is unknown. Last but not least, the method employs 

AE with BGRU in a DL-based model to identify DDoS assaults. On the data plane, we propose the following aspects: the 

switch's storage capacity, the average flow rate, the IP Options header, and the average rate of packets with addresses. The 

classifier utilises a dataset created by extracting features and performing calculations on both normal and attack packets. To 

further enhance detection, additional Machine Learning (ML) approaches are employed. The method updates the user's trust 

value and blocks questionable senders based on this value to minimise the consequences of DDoS attacks when the system 

detects one. The proposed approach outperformed similar strategies in terms of accuracy and false alarm rate, as indicated by 

the experimental data. 

 

To better detect both DDoS and non-DDoS attacks, Nalayini et al. [21] presented an optimised dual intrusion detection system 

that utilises the best available models. The optimal parameters are determined by Hyper-Tuned parameter optimisation using 

methods such as Decision Trees, Random Forests, and Logistic Regression. To reduce the 77 features to 4, we apply the RFE 
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method. Twenty-one models result from an innovative Deep Grid Network that combines hyper-tuned classifiers with seven 

additional ML methods. To make the most accurate forecast of a DDoS attack, an ensemble approach selects the six best models 

from 21. Additionally, Mininet generates a new dataset to ensure the model is validated correctly. 

 

A practical dataset, HLD-DDoSDN, was suggested by Bahashwan et al. [22]. It includes the most common DDoS attacks 

directed against an SDN controller, including ICMP, UDP, and Transmission Control Protocol (TCP). This SDN dataset also 

includes a range of traffic fluctuation levels, representing the high and low traffic variation rates observed in DDoS attacks. To 

ensure its superiority, it is statistically tested across all eight scenarios and qualitatively compared with existing SDN datasets. 

Additionally, it incorporates important elements that significantly enhance the detection of genuine SDN attacks, and it meets 

the size, attack diversity, and scenario criteria of a benchmark dataset. Our evaluation of HLD-DDoSDN's characteristics is 

based on a detection technique called Deep Multilayer Perception (D-MLP). The results of the experiments demonstrate that 

the characteristics used are highly effective in terms of accuracy, recall, and precision in recognising DDoS flooding attacks, 

regardless of the attack rate. 

 

To identify and categorise DDoS attacks, Effah et al. [23] developed and deployed a hybrid deep learning model called CRNN-

Infusion. Our model made use of a convolutional neural network (CNN) besides recurrent models; it was trained using the 

CICDDoS2019 dataset acquired from the Canadian Institute of Cybersecurity (CIC); and to improve its efficiency and reduce 

its dimensionality, we used Random Search Hyperparameter Tuning (RSHT) and Feature Selection (FS) approaches. Security 

for training the model using Cyber Intelligence Centric (CIC) with RSHT and FS methods for dimensionality reduction and 

improved model efficiency. When tested against competing deep learning (DL) models trained on the same dataset, our 

proposed model outperformed them all as a DDoS attack classifier. Categorise distributed denial of service (DDoS) assaults on 

network infrastructures with an accuracy of up to 99.992%. The results show that hybrid deep learning models perform best 

when hyperparameter tuning and feature selection are performed effectively. Our suggested model achieved 98.92% accuracy, 

99.02% precision, 98.92% recall, and 98.93% F1 score. 

 

Using a feature selection and Bi-LSTM-based honey badger optimisation algorithm in a cloud setting, Pandithurai et al. [24] 

demonstrated the ability to predict DDoS attacks. Initially, input characteristics are extracted from the DDoS attack dataset. 

The next step is to send the input features to the preprocessing stages, which may include normalisation using Bayesian and Z-

score. Feature selection using Honey Badger Optimisation (HBO) is the next step after data preprocessing. Here, the features 

are selected by minimising their MSEs to obtain the best features. Then, to forecast DDoS assaults, a Bi-LSTM classifier is 

given the best characteristics. Additionally, the suggested model is tested using several pre-existing methods, such as ANNs, 

DBNs, LSTMs, and DNNs. The Bi-LSTM model achieved several impressive results when tested using the current approach. 

It achieved high accuracy (97%), sensitivity (95%), specificity (90%), error rate (3%), precision (94%), and so on. Finding 

DDoS in a cloud environment is made easy using the suggested paradigm. 

 

To safeguard the SDN environment, Kaur et al. [25] proposed K-DDoS-SDN, a DDoS attack detection method based on Kafka. 

The two main components of the K-DDoS-SDN are the NTStorage and NTClassification modules, which are responsible for 

storing and classifying network traffic, respectively. To categorise traces in real time, the NTClassification module utilises an 

efficient, well-implemented solution on the two-node Kafka Streams cluster, built with scalable H2O ML approaches in a 

distributed manner. The NTStorage module systematically saves raw packets, network flows, and 21 key properties in HDFS 

for retraining existing models. The recently released CICDoS2019 dataset was used for both the design and evaluation of the 

projected K-DDoS-SDN. When it comes to identifying valid network traces and the most common types of attacks, including 

DDoS and UDP, the proposed distributed K-DDoS-SDN achieves an average accuracy of 99.22%. Additionally, the results 

demonstrate that the proposed K-DDoS-SDN successfully categorises traffic traces into five groups with an accuracy of 81% 

or higher. 

 

3. Proposed System 

 

3.1. SDN-Enabled IoT Topology 

 

At the control layer, the distant SDN floodlights are coordinated with the Mininet emulator, which launches the SDN-enabled 

IoT system architecture. On the forwarding plane, you'll find the deployed IoT hosts linked to OF switches. Notifying the SDN 

of any new communication requests is the main function of these OF switches. When in use, OF switches notify the SDN 

controller of DDoS attacks and the current congestion rate on all available communication lines. In response to a DDoS attack, 

the SDN activates the built-in congestion management mechanism. Initially, the EV model, which employs adaptive machine 

learning classification incorporating SVM and LR, is executed by the OF switches. In the mitigation response, the manager 

calculates an alternative route using operational ports and link flow congestion information. This is done for real host requests.  
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As intermediate devices, OF switches regularly provide statistics in bytes and execute path returns in compliance with the 

controller; meanwhile, they use a hash table to record the hierarchical structure of the incoming statistics and the network 

perspective. The SDN controller also sorts the calculated alternate pathways by network path index. The SDN controller's 

ability to deploy more alternative pathways across OF switches has an inverse relationship with the predicted paths.  

 

 
  

Figure 1: Custom SDN IoT system topology with POX supervisor 

 

In this research, we also employ two topologies—Figures 1 and 2—for experiments that utilise SDN-enabled IoT networks. 

With a POX Controller, we create a unique SDN-enabled IoT network architecture. In the second network architecture, we 

include a Floodlight Controller to provide software-defined networking for things. At the forwarding plane, both topologies 

have OpenFlow switches that are further linked to IoT devices. At the same time, SDN controllers are present in the control 

plane to counter the DDoS attack. 

 

 
  

Figure 2: Custom SDN-enabled IoT topology with floodlight controller 

 

Refer to Figure 3 for an illustration of how the proposed model would sit between the controller platform and other controller 

applications. The three main parts are a mitigator, a detector, and a monitor. By establishing a mapping link among hosts, the 

monitor enables rapid detection of network irregularities. 

 

 
 

Figure 3: Architecture of the proposed model 
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3.2. AI Module and Deep Learning Models 

 

We implemented an AI module in the controller to identify and categorise attack types when the SDN network experiences 

anomalous packets. The models for binary and multiclass classification were trained on SDN public datasets during the study's 

training phase. Unlike multiclass classification, which focuses on identifying abnormalities, binary classification aims to 

distinguish between normal and abnormal instances. Before making a forecast for a binary or multiclass classification model, 

network flows pass through the AI module to extract features. Lastly, the controller determines how to handle network traffic 

based on the forecasts. 

 

3.3. Dataset Description  

 

The assessments in the proposed framework are conducted using a dataset specific to the environment. This dataset converts 

the network statistics to a “CSV” file.  

 

Table 1: Features of the traffic structures 

 

RSIP SDFB RFES RPFES SDFP 

41 119.721586 41 0.516129 0.450748 

41 85.944815 41 0.516120 0.279828 

41 84.437979 41 0.516129 0.278636 

 

The “tshark” software, run from the terminal, is used to create the CSV file with restricted fields. Also, Tables 1 and 2 

demonstrate the attack as mentioned above. Table 2 shows that the packet interval field shows the greatest difference between 

the two traffic types. 

 

Table 2: Features of the DDoS attack structures 

 

RSIP RPFES SDFB RFES SDFP 

12 1.00000 333.682848 34 0.721688 

12 1.000000 313.496126 24 0.821678 

12 1.000000 320.257404 25 0.6704407 

 

The entire dataset, comprising 3999 rows and six columns, is presented in Figure 4. The last column determines whether the 

traffic is considered normal or a distributed denial-of-service attack based on the initial values. 

 
 

Figure 4: Print of the complete dataset over a usual or DDoS attack 

 

3.4. Features Extraction of Network Traffic of Mininet Topology Stage 

 

When the network settings are changed in the framework, the performance of the real-time traffic produced by the topology 

varies. Figures 1 and 2 illustrate two distinct SDN network topologies, each featuring a unique combination of network density 

and remote SDN controller. The pace of packet transmission via active communication channels, however, determines the 

primary aspects of traffic. Such traffic characteristics differentiate between typical traffic patterns and very varied network 

traffic requests. We created a module to collect data from real network traffic and classified its features. To gather traffic 

information via the OF switches, our feature extraction module runs a shell script. It generates the “SVC” data files for the 

232



 

Vol.3, No.4, 2025  

following metrics: packet count, byte size, source IP count, and destination IP count. Afterwards, the designed Python script 

module takes these files as input and calculates several metrics, Rate of Flow Entries on Switch (RFES). Manipulating network 

traffic can be achieved by manually initiating distributed denial-of-service (DDoS) attacks against specific hosts within the 

network. To calculate the following traffic characteristics, this feature extraction module utilises libraries. 

 

 Rate of Source IP (RSIP): This function shows the sum of source IPs in a certain amount of time for a specified 

destination IP address: 

 

RSIP =
∑SIP

T
                                                                                                                                            (1) 

 

Where T is the sample time, which is modifiable based on how well the SDN controller manages the flow of traffic. 

 

 SDFP, or Standard Packets: This is the deviation of the sum of packets during the T period: 

 

SDFP = √((1/n) ∗ ∑ (packetsi − meanPackets)n
i=1 )

2

                                                                        (2) 

 

Given that n is the count of flows, 〖packets』_i is the count of packets for flow ith in T period, and mean is the sum of all of 

them. The total packets across all flows and all T times are averaged to obtain the average packets. Because a distributed denial-

of-service (DDoS) attack involves the transmission of many small packets, each with a smaller standard deviation than a typical 

data packet, this parameter drops dramatically during an attack. 

 

 The Standard Deviation of Flow Bytes (SDFB) represents the quantity of bytes within the standard deviation of the T 

period: 

 

SDFB = √((1/n) ∗ ∑ bytesi − meanBytesn
i=1 )

2

                                                                                  (3) 

 

where bytesi is the total bytes of flow ith during the time period, and meanBytes is the average of all the flows' total bytes 

during that time. Similar to SDFP, SDFB is strongly associated with DDoS attack occurrences. During an assault, this 

parameter's predicted value is lower than it is during regular traffic flows. 

 

 The sum of flow entries to the switch within a given time period is known as the RFES. 

 

RFES =
∑F

T
                                                                                                                                              (4) 

 

This is a crucial statistic for attack identification because, unlike the SFE value during normal traffic flows, the sum of flows 

increases significantly within a predetermined time frame during an attack. 

 

 Pair-Flow Entries on Switch Ratio (RPFES): The sum of interactively divided flow entries in the switch divided by 

the total number of flows during the T time 

 

RFES =
IntIP

N
                                                                                                                                              (5) 

 

Where N is the overall IP count, and IntIP is the overall count of IPs that are interactive inside the flow. Therefore, there will 

be a precipitous decline in the volume of interaction flows the moment the assault starts. The feature extraction unit then 

generates the RSIP, RFES, and RPFES headers and assigns the calculated values once the features mentioned above have been 

computed. The feature extraction module assigned the value 1 to typical traffic based on the computed values. To accept 

incoming network traffic in real time, the feature extraction module generates the training data file, “live.csv”, at the end of the 

process.  

 

The “live.csv” file stores the freshly calculated network traffic and feeds it into the trained adaptive machine learning model. 

Five characteristics of network traffic can effectively distinguish DDoS attacks from regular traffic: they include an abnormal 

exponential growth in the values of RSIP, RFES, and RPFES, which stand for Rate of Flow Entries on Standard Deviation of 

Flow Bytes, respectively. This significantly improves the efficacy and precision of DDoS detection. 

. 
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3.5. Feature Selection using the WHO Algorithm 

 

The main reason for selecting this approach is that it is relatively new compared to other types of metaheuristic algorithms. 

Furthermore, it produces better results for the study's benchmark functions as well. Because of this, we decided to employ this 

metaheuristic approach to enhance the efficiency of the proposed strategy. The World Health Organisation's algorithm is based 

on wildebeests' behaviour: finding food. Wildebeests are social, energetic creatures who are always on the go in quest of food. 

As a mating strategy, guys engage in sex challenges with potential suitors. The WHO algorithm began with randomly selected 

candidates. Among smaller (Xmin) and upper (Xmax) borders, the populace was constrained, i.e., 

 

Xi ∈ [Xmin, Xmax]                                                                                                                                    (6) 

 

Here, I = 1,2,… , N 

 

After that, the wildebeest started moving with the milling gait. During this stage, the ideal position was still being sought, with 

a fixed value (n) representing the small random mobility that depends on location. Those vying for spot X had used a phase. Zn 

It should consistently look for the small areas. The duration might be adjusted based on the size of the participants' arbitrary 

steps. Because of this, the era of focused experiments Zn was produced formula: 

 

Zn = Xi + ε × θ × v                                                                                                                                (7) 

 

Here, a random unit vector is characterised by v; a random unchanging value among 1 and 0 is denoted by θ′; the ith applicant 

sum is represented by Xi; and the learning degree is signified by ε. After assessing a fixed sum (n) of minor random possibilities, 

the wildebeest adjusted its position to find an ideal random site. It is labelled in Equation (8) below. 

 

Xi = a1 × Zn
∗ + β1 × (Xi − Zn

∗)                                                                                                               (8) 

 

Here, the local movement of the candidates is taught by the a1 and β1 leader variables. 

 

Xi = a2 × Xi + β2 × Xh                                                                                                                          (9) 

 

Here, a2 besides β2 stand in the crew’s local drive, and Xh denotes a random candidate. 

 

Xi = Xi + θ × (Xmax − X min) × v̅                                                                                                        (10) 

 

Here, the haphazard unit vector is represented by v̅. Another term employed in the algorithm was to simulate crowded locations. 

There was a population when the grassland was quite productive. Personal pressure is the term used to describe this idea. To 

complete a job, this word is employed, and the top candidate applies the following formula to outperform all other competitors. 

 

if(‖X∗ − Xi‖) < η, (‖X∗ − Xi‖) > 1                                                                                                       (11) 

 

Then Xi = X∗ + ε × n̂                                                                                                                              (12) 

 

Where the symbol h stands for a congestion-prevention threshold and n ̂ is the number of reachable sections close to the optimal 

solution point. After simulating the swarm's social memory in the previous step to improve placements, the following equation 

was used to calculate it. 

 

X = X∗ + 0.1 × n̂                                                                                                                                     (13) 

 

At last, the classifier's hyperparameters were initialised using the optimal value of this approach. The ideal parameters are an 

L2 regularisation dropout rate of 40%, a momentum of 0.8, a learning rate of 0.001, a 1 × 10−6, and an 8-batch size. The 

difficulty of the WHO procedure is O (p × m). Here, m besides n signify the populace and problem dimension, correspondingly. 

 

3.6. Proposed Multichannel Deep Learning Framework 

 

Three models were used for this study, all of which contributed to the final forecast, and the research made use of an integrated 

multichannel method: 

 

 The transformer block, 
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 Typical CNN architecture. 

 Bidirectional GRU (BiGRU) 

 

Our suggested approach differs from the current state of the art by combining the capabilities of three state-of-the-art deep 

learning representations: the block, BiGRU, and CNN architectures. As a consequence, it can accurately extract relevant 

information and provide reliable results. More information on each of them is provided in the sections that follow. 

 

3.6.1. Transformer Block 

 

The transformer accelerates training by enabling fast parallel computation, unlike RNNs and LSTMs. Faster learning and 

improved model performance on any prediction task are enabled by the attention mechanism, which addresses the limitations 

of the encoder-decoder model with lengthy sequences. The transformer is primarily composed of multihead attention (MHA) 

and scaled dot-product attention units. Also included in the model are embeddings, a fully connected network, encoder and 

decoder stacks, and a softmax. It is possible to determine the transformer's scaled dot-product as 

 

a(q, k, v) = SM(
qkT

√dk
v)                                                                                                                           (14) 

 

Where a represents each attention key, v is a charge, and SM is SoftMax. dk is the dimensionality of the vector. The square 

root of the dimensions of the key vectors is used to split the attention weights. To make the weights equal to one, the function 

is used in the equation. To find MHA, use the formula in (15). 

 

MHA(q, k, v) = Concat(hd1, … , hdh)W
O                                                                                              (15) 

 

where hdi is intended as follows: 

 

hdi = a(qwi
Q, kwi

K, vwi
V)                                                                                                                    (16) 

 

and wi
Q, wi

K, wi
V agree to the weight media to be learned. The transformer nevertheless surpasses NLP deep representations, 

such as LSTMs and gated recurrent units (GRUs), on several tasks, while utilising only the attention mechanism and not an 

RNN, and setting the embedding size. 

 

3.6.2. Bidirectional Recurrent Neural Networks 

 

The bidirectional network in our perfect begins with a layer that applies dropout to entire feature maps rather than specific 

regions. Then, the GRU-based bidirectional RNN (BiRNN) layer [32] receives the output from this layer. This layer links two 

hidden layers, one facing ahead and one facing backwards, to the same output. Afterwards, the BiRNN layer's output is 

concurrently passed to pooling layers, which then aggregate their outputs to produce fresh input for the following level. There 

are several windows or partitions within each input feature map. Following these steps, the average pooling function may 

determine the average of an n-by-n window: 

 
x1+x2+⋯+xn

n
                                                                                                                                               (17) 

 

The max-pooling of the sum that has a window {x1, . . xn}. The goal of both max pooling and average pooling is to reduce the 

dimensionality of the data while retaining all relevant information. 

 

zti = σ(Wxzxti + Wszsti−1 + bz)                                                                                                            (18) 

 

eti = σ(Wxexti + Wsesti−1 + be)                                                                                                            (19) 

 

gti = tanh(Wxgxti + Whg(eti⨀hti−1) + bg)                                                                                          (20) 

 

sti = (1 − zti)⨀sti−1 + zti⨀gti                                                                                                              (21) 

 

where xti is the contribution to the GRU cell at period ti. Wxg, Wxz and Wxe are the weight matrices that receives input Xti. Wsg, 

Wse and Wsz are matrices, the previous cell state vector. tanh is a function, and σ is a purpose. be, bg, and bz are units. sti is 

the output at time ti.⊙ mentions the Hadamard creation. In BiRNNs, each GRN cell computes the hidden direction sti−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 
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the backward direction sti+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. As a result, the BiGRU can benefit from features in both directions. The following equation 

explains the concept of BiRNNs. 

 

sti = sti−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⨁sti+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗                                                                                                                                      (22) 

 

Where ⊕ suggests the element-wise sum for the vectors from both commands, left and right. 

 

3.6.3. Basic CNN architecture 

 

Another CNN we have is simple and has only one CNN layer. The ReLU activation is applied, and the layer contains 32 filters, 

each with a size of 4. Every CNN filter uses the filter map W to convolve the input x with the feature map CV. 

 

F = CV(W, X)                                                                                                                                        (23) 

 

Then, the bias unit b enhances the chin map activation function, as exposed in (24) 

 

Relu(F +  b)                                                                                                                                       (24) 

 

At the outset of training, the CNN layer's filters are randomly initialised using the Glorot normal initialiser. The output is then 

sent to the film, which uses a pool size of 2 and applies dropout at 50%. 

 

3.6.4. Multichannel 

 

Three networks—Convolutional Neural Networks (CNNs), BiRNNs, and a transformer block—are used in this paper's 

multichannel deep learning model to process the input concurrently. The output is aggregated and sent to two fully coupled 

dense layers, one from each network. There are 60 neurons in the first dense layer and 30 in the second. The softmax classifier 

is then given the output. Softmax categorises the input data into two groups: cyberbullying and non-cyberbullying. The outputs 

of the three nets are mutually using the same layer. If vectors U, I, O, where 𝑈 is as follows: U = {U1, U2, . . Ui}, the vector I is 

as follows: I = {I1, I2, . . Ii}, and the vector O is as follows: O = {O1, O2, . . Oi}, then combine them into one vector as shadows: 

 

V = Conc(U, I, O)                                                                                                                                    (25) 

 

The consequence V would be as shadows: V = {U1, U2, Ui, I1, I2, Ii, O1, O2, Oi} 
Dense layer computes its output DL as shadows: 

 

DL = F(∑ wi. xi + bi )                                                                                                                             (26) 

 

Where w is the activation function, it is performed, after which b is added. Given that this model addresses a binary classification 

problem, a binary loss function was used. To understand how the entropy loss function works, look no further than Equation 

(27). 

. 

BC = −∑ yc. log (sθ(x)c)C                                                                                                                      (27) 

 

Where c represents the class index, this problem is divided into two classes. With the current input data (x) and the anticipated 

probability (s) for class c, we can determine the proper value (y) for class c. Additionally, we optimise the network using the 

Adam optimiser. 

 

4. Result and Discussion 

 

This section presents the outcomes of the suggested model. A desktop computer equipped with a 3.20 GHz Intel Core (i7) 

8700U CPU, 4 GB of NVIDIA GeForce GTX 1050 Ti graphics, and 16 GB of main memory was used to perform the 

experimental research for this work. The program was developed using Python 3.7 and the associated libraries. By allocating 

70% of the data for training and 30% for testing, we were able to boost the network's learning capacity while preventing 

overfitting and deterioration. Using L2 regularisation, the hyperparameters that the WHO procedure optimises are: a learning 

rate of 0.4. To make sure the model learned consistently, we set the training duration to 100 epochs. After fifty epochs, the 

learning and training curves converged, indicating that the model had reached a stable state. 
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4.1. SDN Simulation 

 

Using the commercial edition of EstiNet, which combines the benefits of a simulator and an emulator 

(https://www.estinet.com/ns/? page_id = 21140), this study's SDN version. This means that the SDN controller allocates 

resources to mimic the host's test network traffic. It is also possible to programmatically control the occurrence of network 

events. This means that the simulated environment's timing resources are synchronised with the real system time. The software's 

graphical user interface enables the modelling of the actual network's design and packet transmission behaviour. In its software 

imitation, EstiNet displays the actual network setup and packet transmission characteristics. The EstiNet simulator includes 

OpenFlow, which supports the SDN protocol. In software-defined networking, controllers and switches communicate via the 

OpenFlow protocol. There are two possible configurations for the control plane in an OpenFlow switch: one in which the 

control plane and data plane overlap (in-band control plane), and the other in which they are distinct (out-of-band control plane). 

In the EstiNet simulation's software-defined networking (SDN) environment, the open-source controller software may run and 

take control of the OpenFlow virtual switch. Within the simulated environment, it adheres to the OpenFlow protocol and 

supports activities. With the simulator's execution and playback modes, users can observe how FlowTable, GroupTable, and 

MeterTable are updated. Whether it's the packet transmission latency or loss rate of a wired network, or the energy consumption 

or distance covered by a wireless network, EstiNet can programmatically regulate these network conditions.  

 

Using a variety of wireless and cable communication protocols, it transmits packets over a network. The most common 

application of time dilation is to model changes in the rate of time passage. Reducing the system clock while maintaining 

accuracy allows for the simulation to run. With the help of a packet event translator or the event processing core, the simulated 

network's virtual network time is automatically updated, making it more accurate and efficient than traditional time dilation 

approaches. To execute the program code, EstiNet utilises Linux containers. Construct virtual networks to build hybrid 

virtual/physical simulations. The EstiNet simulator offers a testing environment for networks, encompassing both real and 

virtual devices. For testing purposes, both types of devices can communicate with each other. Our ML, in addition to DL 

representations, is deployed in the SDN for specific purposes, as it supports the Python language. As a tool for DDoS attack 

simulation under Linux, the Hing tool simulates SYN flood and random-source attacks. It is a packet assembler/analyzer. An 

attacker may launch a (DDoS) assault by sending several connection requests and a flood of random packets to the target system 

from various sources. The environmental setting is shown in Figure 5. 

 

 
 

Figure 5: Environment setup 

 

4.2. Performance Measure 

 

A performance indicator is a reliable way to assess the proposed system's efficiency by regularly evaluating results and 

outcomes. Additionally, the procedure of educating, assembling, and analysing data regarding the outcomes of group or solo 

activities is a measure of efficacy. See Table 3 for the confusion measure used to assess the binary input; it's explained in the 

following words: 

 

Table 3: Confusion matrix 

 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Positive (FP) 

Actual Negative False Negative (FN) True Negative (TN) 
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True positives are actual occurrences that have been appropriately labelled as positive. Once a genuine positive is recognised 

as a false negative, the FP will state as much. Just as FN are actual negative occurrences, TN are true negatives that were 

incorrectly classed as positive. The mathematical equations of ACC, F-m, PR, and RC are meant in Eqs. (28), (29), (30), and 

(31). 

 

Accuracy =
TN+TP

TP+TN+FN+FP
× 100                                                                                                         (28) 

 

F − measure =
2TP

(2TP+FP+FN)
× 100                                                                                           (29) 

 

Precision =
TP

(FP+TP)
× 100                                                                                                          (30) 

 

Recall =
TP

(FN+TP)
× 100                                                                                                           (31) 

 

Where true positive is symbolised as TP, and TN expresses true negative, and then FP is spoken as false positive, and FN is 

uttered as false negative. 

 

Table 4: Validation analysis of proposed feature selection 

 

Methodology Parameter Evaluation 

Precision (%) Recall (%) Accuracy (%) F-measure (%) 

PSO 78.14 89.92 88.67 80.72 

ACO 70.91 72.69 72.33 75.17 

MBO 64.17 86.66 80.24 68.28 

GWO 91.94 95.61 76.86 95.78 

WHO 96.84 97.24 94.13 98.97 

 

Table 4 represents the Validation Analysis of the Proposed Feature Selection. In the analysis of the PSO scheme, a precision 

of 78.14, a recall of 89.92, an accuracy of 88.67, and an F-measure of 80.72 correspondingly. Then, the ACO scheme achieved 

precision of 70.91%, recall of 72.69%, accuracy of 72.33%, and an F-measure of 75.17%. Then, the MBO scheme achieved a 

precision of 64.17%, a recall of 86.66%, an accuracy of 80.24%, and an F-measure of 68.28% (Figure 6).  

 

 
 

Figure 6: Visual representation of proposed feature selection models 

 

Then the GWO scheme achieved a precision of 91.94, a recall of 95.61, an accuracy of 76.86, and an F-measure of 95.78. Then, 

the WHO scheme achieved a precision of 96.84, a recall of 97.24, an accuracy of 94.13, and an F-measure of 98.97 (Figure 7).  
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Figure 7: Graphical description of various classifiers 

 

4.3. Advantages and Restrictions 

 

This section deliberates the compensations and limits of the proposed model. 

 

4.3.1. Advantages 

 

The projected scheme has the subsequent compensations: 

 

 No additional hardware is needed; the suggested model is an add-on module for the SDN controller that blocks DoS 

attacks targeting SDN. It acts as a barrier between the controller and other controller programs, and its design aligns 

with OpenFlow standards. It is unique in that it requires no changes to the data plane or supplementary hardware. 

 Quick anomaly detection: the watchdog establishes connections between hosts and switches for mapping purposes. 

Using statistical models enables the quick identification of network irregularities. 

 Low overhead and effective: the monitor only activates the detector to identify attacks when it detects an abnormality, 

which drastically reduces the system's overhead compared to other DoS detection methods. Concurrently, the detector 

considers the characteristics of the address assault and extracts the most indicative features to enhance the detection 

algorithm's performance. 

 

4.3.2. Limitations 

 

The projected scheme also has some limits, which are briefly discussed as shadows: 

 

 Doesn't target particular flows—instead, after an assault has been verified, the proposed model's mitigator will set up 

flow rules to prevent further communication from the infected host. 

 

Second, it can't identify attacks on the application plane; the suggested model was primarily designed to safeguard data-plane 

and control-plane components, such as flow tables and controllers. Malicious apps or data leaks that occur on the request plane 

or via northbound interfaces (e.g., RESTful API) are not protected. 

 

5. Conclusion 

 

In this article, we examine ways to protect Software-Defined Networking (SDN) settings against denial-of-service (DoS) 

attacks that exploit fake or falsified source addresses. These attacks are quite dangerous because SDN systems separate the 

control and data planes, making the controller an ideal target for overload attacks. To fix this problem, the research suggests an 

adjustable, protocol-free security framework that uses ensemble deep learning. This model uses several learning techniques to 

make it more robust and accurate at distinguishing real from fake traffic. The WHO technique is a way to extract and select 

features that help the model identify the most important flow characteristics, thereby improving its ability to detect. The system 

is a small add-on for SDN controllers that works with OpenFlow messages and detailed flow statistics. The model looks for 

anomalous patterns in data exchanges between switches and hosts that could indicate an ongoing attack. When the model 
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detects suspicious activity, it automatically configures flow rules at the switch level to block hazardous packets from reaching 

the controller. This method greatly reduces the controller's workload and mitigates the effects of DoS attacks. The study's 

practical results show that the proposed ensemble deep learning model achieves high accuracy, low overhead, and low 

computational cost. It can detect and stop many types of DoS attacks targeting SDN infrastructure. Overall, the solution 

provides SDN security with a framework that can grow, perform well, and adapt to protect against spoofed-source DoS attacks. 
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